

A Robust Mixed-Integer Convex Model for Optimal Scheduling of Integrated ES-SOP Devices

Ilias Sarantakos, Meltem Peker, Natalia-Maria Zografou-Barredo, <u>Matthew Deakin</u>, Haris Patsios, Timur Sayfutdinov, Phil Taylor, David Greenwood

Risk and Resilience Day City, University of London 8th March 2023

From Newcastle. For the world.

Summary: a method is developed to schedule integrated energy storage-SOP devices that is robust to uncertainty without compromising on model complexity

Drivers of storage-SOP devices in networks:

- Technology push developments in BESS and power converters
- Market pull distribution network capacity needed in next decade

Questions:

- How should we model the full ES-SOP system to given multiple services?
- How might a DSO schedule such a system in a constrained distribution network?

This paper:

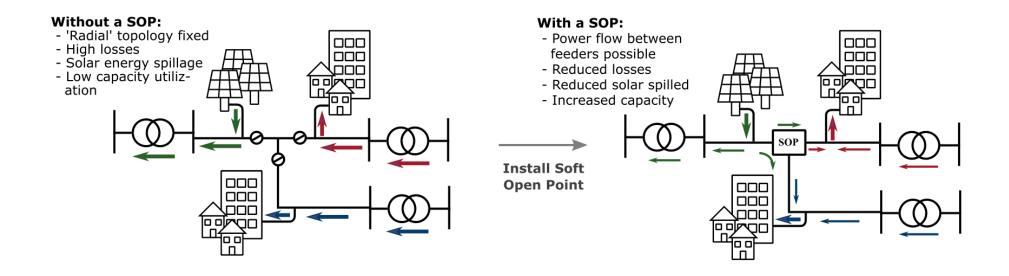
A tractable, robust method for scheduling ES-SOP devices subject to renewable and load forecast uncertainties. Three contributions:

- Robust optimization formulation for the ES-SOP system,
- using a binary-polynomial su, bsystem loss model,
- as a tractable, mixed-integer convex program



$$D^{t}\left(\overline{\mathbf{d}}^{t}, \hat{\mathbf{d}}^{t}, \Gamma^{t}\right) \coloneqq \left\{ \begin{aligned} \mathbf{d}^{t} \in \mathbb{R}^{|\Omega_{n}|} : \sum_{i \in \Omega_{n}} \left(\theta_{i,t}^{+} + \theta_{i,t}^{-}\right) \leq \Gamma^{t}, \theta_{i,t}^{+} + \theta_{i,t}^{-} \leq 1, \\ d_{i}^{t} = \overline{d}_{i}^{t} + \hat{d}_{i}^{t} \theta_{i,t}^{+} - \hat{d}_{i}^{t} \theta_{i,t}^{-}, \quad \forall i \in \Omega_{n} \end{aligned} \right\}$$

Soft Open Points (SOPs) use AC-DC-AC converters to enable power transfer between feeders in distribution grids, providing a variety of potential grid services



<u>This work</u>: energy storage is connected to the DC link of the SOP, a win-win:

- Energy storage can make use of SOP converters;
- The SOP can provide both spatial and temporal demand shifting

Source: author's own

From Newcastle. For the world.

ES-SOP system modelling: a "binary-polynomial model" for modelling efficiency is introduced to better match subsystem physics and operating characteristics

Benchmark subsystem loss model:

$$P_{\rm Loss} = k|S|$$

Proposed subsystem loss model:

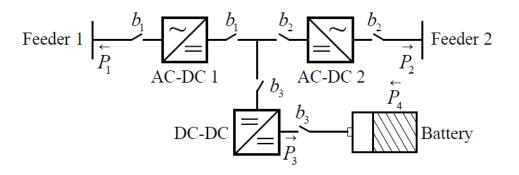
$$P_{\rm Loss} = b(c_0 + c_1|S| + c_2|S|^2)$$

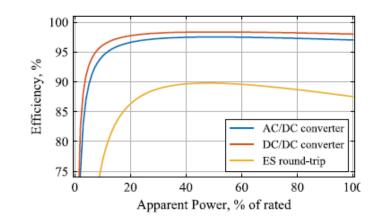
where

- $b \in \{0,1\}$ is the on-off state of the subsystem
- c₀ represents turn-on losses (e.g., filters, transformers)
- c₁ diode-like losses
- c₂ ohmic losses

Notes:

- Different components have different forms
- E.g., Battery has b = 1 and $c_1 = 0$
- Model can be fit to measured converter data
- Efficiency typically peaks at partial load
- Can be represented in mixed-integer conic form





The proposed adaptive optimization robust optimization approach could allow DSOs to dispatch assets with varying degrees of robustness and recourse

The proposed two-stage approach is based on the formulation of Bertsimas et al:

- First stage:
- Initial decisions made (e.g., committing units / scheduling ES)
- Second stage
- 'Outcome' (*d*)-aware feasibility and objective (e.g., reserve dispatch given *d*; impact of ES-SOP schedule *x* on network losses)
- 'Budget of uncertainty' Γ controls size of uncertainty set D

This work:

- First stage x includes ES-SOP scheduling
- Second stage y is only network variables (including losses)
- Budget of Uncertainty Γ chosen based on Monte Carlo heuristic to minimize Probability of Constraint Violation (PoCV)

 $\begin{array}{ll} \min_{\boldsymbol{x},\boldsymbol{y}(\cdot)} & \left(\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} + \max_{\boldsymbol{d}\in\mathcal{D}} \boldsymbol{b}^{\mathrm{T}}\boldsymbol{y}(\boldsymbol{d})\right) \\ \text{s.t.} & \boldsymbol{F}\boldsymbol{x} \leq \boldsymbol{f}, \ \boldsymbol{x} \text{ is binary} \\ \boldsymbol{H}\boldsymbol{y}(\boldsymbol{d}) \leq \boldsymbol{h}(\boldsymbol{d}), \ \forall \boldsymbol{d} \in \mathcal{D} \\ \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{y}(\boldsymbol{d}) \leq \boldsymbol{g}, \ \forall \boldsymbol{d} \in \mathcal{D} \\ \boldsymbol{I}_{\boldsymbol{u}}\boldsymbol{y}(\boldsymbol{d}) = \boldsymbol{d}, \ \forall \boldsymbol{d} \in \mathcal{D} \\ \boldsymbol{I}_{\boldsymbol{u}}\boldsymbol{y}(\boldsymbol{d}) = \boldsymbol{d}, \ \forall \boldsymbol{d} \in \mathcal{D} \\ \boldsymbol{u} \\ \boldsymbol{u}$

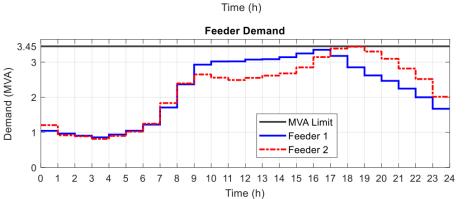
where

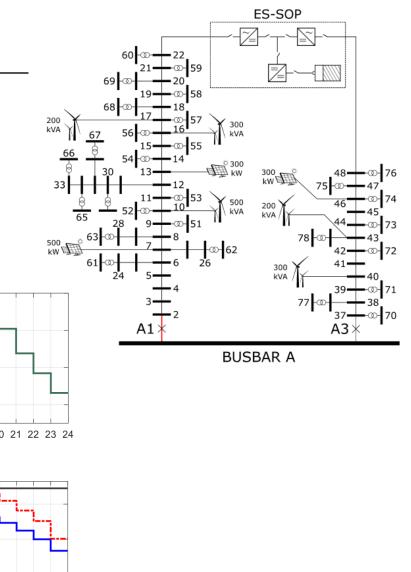
$$\Omega(\mathbf{x},\mathbf{d}) = \left\{ \mathbf{y} : \mathbf{H}\mathbf{x} + \mathbf{K}\mathbf{y} = \mathbf{d}, \ \mathbf{M}\mathbf{y} \le \mathbf{r}, \ \left\|\mathbf{G}\mathbf{y}\right\|_{2} \le \mathbf{g}^{\mathsf{T}}\mathbf{y} \right\}$$

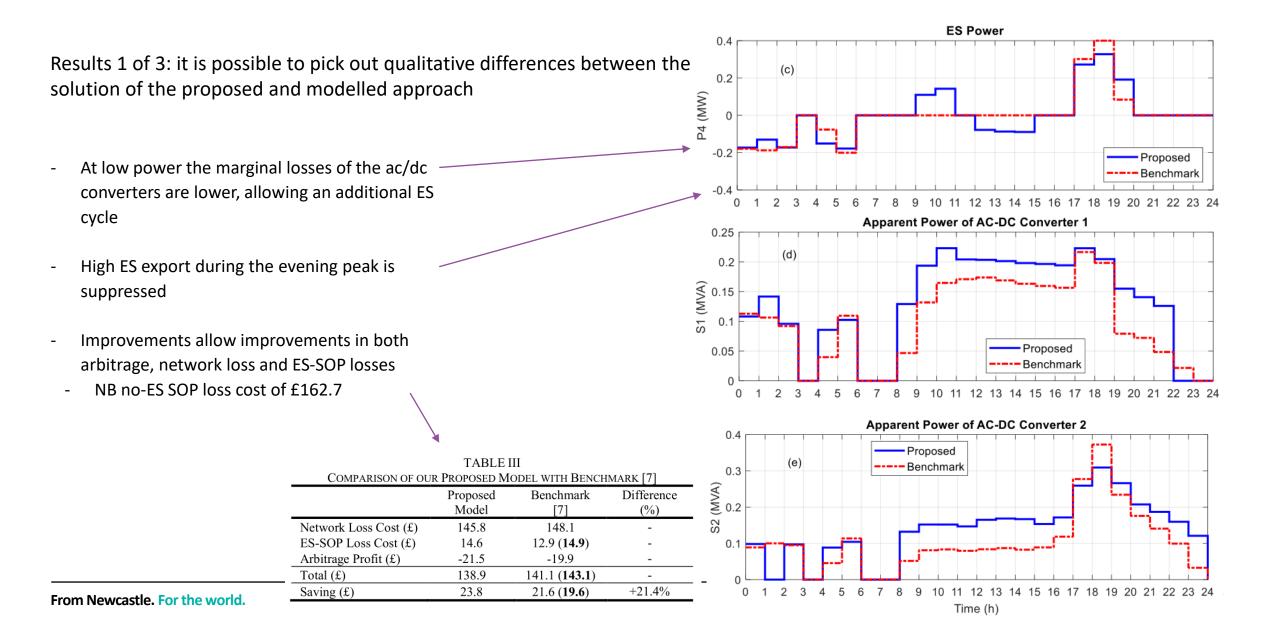
$$D^{t}\left(\overline{\mathbf{d}}^{t}, \widehat{\mathbf{d}}^{t}, \Gamma^{t}\right) \coloneqq \begin{cases} \mathbf{d}^{t} \in \mathbb{R}^{|\Omega_{n}|} : \sum_{i \in \Omega_{n}} \left(\theta_{i,t}^{+} + \theta_{i,t}^{-}\right) \leq \Gamma^{t}, \theta_{i,t}^{+} + \theta_{i,t}^{-} \leq 1, \\ d_{i}^{t} = \overline{d}_{i}^{t} + \hat{d}_{i}^{t} \theta_{i,t}^{+} - \hat{d}_{i}^{t} \theta_{i,t}^{-}, \quad \forall i \in \Omega_{n} \end{cases}$$

A test case and a real-world network are considered to test the proposed ES-SOP device in, using combined loss reductionarbitrage as the cost function

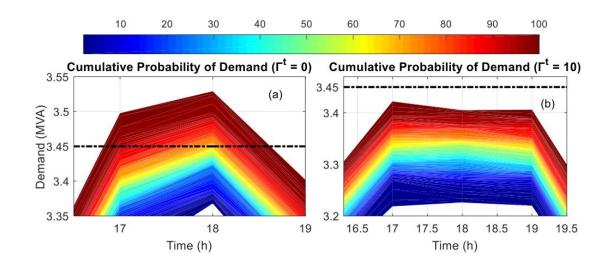
- Network power flow conic relxation (Farivar and Low)
- Two case studies:
- IEEE 33 Bus (connected end-to-end) a lossy network with poor power factor and congestion
- North East distribution system lower level of congestion; and lower losses
- +/- 10% uncertainty for each load and generator, uniform distribution
- 400 kVA SOP; 400 kW/800 kWh BESS

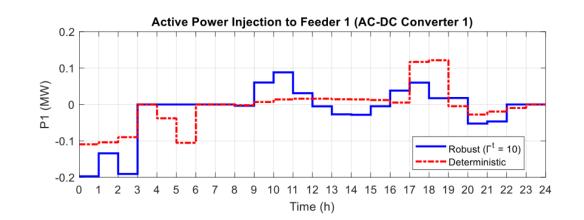


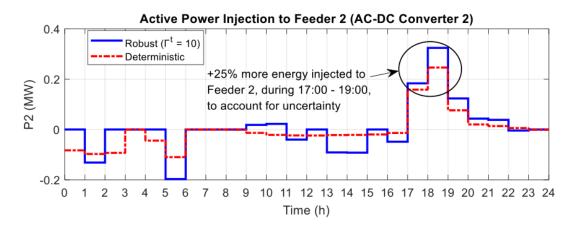




Results 2 of 3: by tweaking the budget of uncertainty, a more robust solution is found







0.5%

Results 3 of 3: the method performs well as compared to alternative approaches, and shows good performance on average

- Difference between proposed and benchmark
 ES-SOP greater in real world network (lower network losses)
- Much more computationally efficient that stochastic optimization
- Average price to provide robustness is (as compared to optimization value) is not much higher (implies difference largely due to network losses)

TABLE VIII Comparison of our Proposed Model with Benchmark [7] – Real-World Distribution Network					
	Proposed Model	Benchmark [7]	Differenc (%)		
Network Loss Cost (£)	69.37	69.38	-		
ES-SOP Loss Cost (£)	8.06	8.49 (14.14)	-		
Arbitrage Profit (£)	-25.28	-24.75	-		
Total (£)	52.15	53.12 (58.77)	-		
Saving (£)	14.53	13.56 (7.91)	+83.7%		

TABLE VI RESULTS OF TWO-STAGE STOCHASTIC PROGRAMMING I (OPTIMALITY GAP = 0.5%) Number of Computational Optimality Scenarios Time Gap >2% 2 1h 5 >2.5% 1h le solution found in 2h

10	No feasible	
Robust	68s	
	-	

TABLE IXPOCV, ROBUST OPTIMAL VALUE, AND MEAN OBJECTIVE FUNCTION VALUEFOR DIFFERENT VALUES OF Γ – Real-World Distribution Network

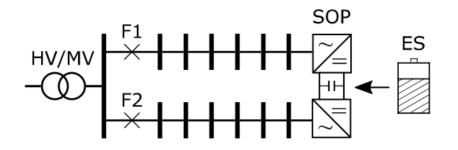
Γ^{t}	PoCV	Rob. Opt. Value	Increase	Mean Obj. Fun. Value	Increase
0	8%	£52.15	0%	-	-
1	3.6%	£55.33	6.1%	£52.22	0.13%
2	1.5%	£56.98	9.3%	£52.40	0.47%
3	0%	£59.73	14.5%	£52.69	1.03%

Conclusions

- Accurate converter loss modelling is necessary when considering total losses
- A two-stage adaptive robust optimization formulation can be used to schedule the ES-SOP device to avoid possible congestion
- Results show good performance can be achieved in an appropriate time (<< 30 mins)

Future work:

- Variations on this approach other uncertainty models, recourse actions, etc to ensure match to DSO priorities and situation
- Modelling and analysis of reconfigurable ac/dc converters



$$D^{t}\left(\overline{\mathbf{d}}^{t}, \widehat{\mathbf{d}}^{t}, \Gamma^{t}\right) \coloneqq \left\{ \begin{aligned} \mathbf{d}^{t} \in \mathbb{R}^{|\Omega_{n}|} : \sum_{i \in \Omega_{n}} \left(\theta_{i,t}^{+} + \theta_{i,t}^{-}\right) \leq \Gamma^{t}, \theta_{i,t}^{+} + \theta_{i,t}^{-} \leq 1, \\ d_{i}^{t} = \overline{d}_{i}^{t} + \hat{d}_{i}^{t} \theta_{i,t}^{+} - \hat{d}_{i}^{t} \theta_{i,t}^{-}, \quad \forall i \in \Omega_{n} \end{aligned} \right\}$$

A Robust Mixed-Integer Convex Model for Optimal Scheduling of Integrated ES-SOP Devices

Thank you for your time!

Question, comments and thoughts always welcome: Email <u>matthew.deakin@newcastle.ac.uk</u>

Twitter @MattDeakin6

Start of research project

End of research project

Solution method: the two-stage optimization is solved using Constraint-and-Column Generation (CCG)

Algorithm 1: Column and Constraint Generation

- 1. Set LB = - ∞ , UB = + ∞ , m = 0, tolerance ε .
- 2. while (UB LB $\leq \varepsilon$) do
- 3. Solve the MP (61)-(67). Get optimal solution and objective, \mathbf{x}^* and f_m , respectively. LB $\leftarrow \max\{LB, f_m\}$.
- 4. Given \mathbf{x}^* , solve the dual SP (76)-(83). Get worst-case uncertainty realization \mathbf{d}^* and objective $f_{\rm s}$. UB $\leftarrow \min\{\text{UB}, \mathbf{c}^{\mathrm{T}}\mathbf{x}^* + f_{\rm s}\}.$
- 5. $\mathbf{d}^{m+1} \leftarrow \mathbf{d}^*$. Introduce new variables \mathbf{y}^{m+1} . Add constraints (64)-(67) to the MP.
- 6. $m \leftarrow m + 1$.
- 7. end
- 8. Return \mathbf{x}^* .

Master problem

$$f_{\rm m} = \min \, \mathbf{c}^{\mathsf{T}} \mathbf{x} + \eta$$

s.t. $\mathbf{A}\mathbf{x} \le \mathbf{b}$
 $\|\mathbf{F}\mathbf{x}\|_{2} \le \mathbf{f}^{\mathsf{T}}\mathbf{x}$
 $\eta \ge \mathbf{e}^{\mathsf{T}}\mathbf{y}^{\mathsf{v}}, \ \forall v = 1,...,m$
 $\mathbf{H}\mathbf{x} + \mathbf{K}\mathbf{y}^{\mathsf{v}} = \mathbf{d}^{\mathsf{v}}, \ \forall v = 1,...,m$
 $\mathbf{M}\mathbf{y}^{\mathsf{v}} \le \mathbf{r}, \ \forall v = 1,...,m$
 $\|\mathbf{G}\mathbf{y}^{\mathsf{v}}\|_{2} \le \mathbf{g}^{\mathsf{T}}\mathbf{y}^{\mathsf{v}}, \ \forall v = 1,...,m$
 $\|\mathbf{G}\mathbf{y}^{\mathsf{v}}\|_{2} \le \mathbf{g}^{\mathsf{T}}\mathbf{y}^{\mathsf{v}}, \ \forall v = 1,...,m$
 $f_{s} = \max_{\sigma^{*},\sigma^{*},\phi^{*},$

Dual subproblem