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Cascading Failures: State-of-the-Art

[1] P. Henneaux, J. Song E. Cotilla-Sanchez, "Dynamic probabilistic risk assessment of cascading outages," 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1-5. and

A quick succession of multiple component failures usually triggered by one or more 
disturbance events such as extreme weather, equipment failure, or operational errors, and 
might also lead to a blackout.

• Methodologies for cascading outage analysis 

• static computation 

• dynamic computation 

• combination of both

Outage process divided into two phases: the slow cascade and fast cascade phases[1] .

Fast phase -- often driven by the transient dynamics of the system and triggering of 
protection devices.
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Motivation and Research Gap

Fast phase of cascade ---too fast (inter-failure characteristic times ~ 
ms/10s) to allow SO to take corrective actions.

• occurrence order and timing are driven by the power system’s 
dynamic evolution in the course of the transient.

Key enablers for a resilient response include the capacity to 
anticipate, absorb, rapidly recover from, adapt to, and learn from 
such an event  -- defined by IEEE PES Task Force[2].

Fast Prediction in real-world settings is critical --- use of Machine 
Learning!

Dynamic modelling+ Protection devices + varying operating 
conditions  --- large scale combinatorial problem !

Power system dynamic trajectories – spatio-temporal in nature!

[2] IEEE PES Task Force: et al., "Methods for Analysis and Quantification of Power System Resilience," in IEEE Trans. on Power Syst., 2022 [Early Access].



Graph Theoretic Modelling 

[3] R. Ramakrishna and A. Scaglione, "Grid-Graph Signal Processing (Grid-GSP): A Graph Signal Processing Framework for the Power Grid," in IEEE Transactions on Signal Processing, 
vol. 69, pp. 2725-2739, 2021.

Power system weighted graph[3] , 𝑮 𝑽, 𝑬
Graph: Nodes (V) – buses, Edges (E) – lines.

𝑐𝑎𝑟𝑑 𝑉 = 𝑛, 𝑐𝑎𝑟𝑑 𝐸 = 𝑙
𝑛 𝜖 (𝑛𝑔, 𝑛𝑙)

Electrical grid signals indexed by such a graph.

Spatial correlations between different power system 
buses represented by weighted adjacency matrix, ෩𝑨

ሚ𝐴 = |𝑌𝑏𝑢𝑠|
Normalized Graph Laplacian, ℒ
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where, D is the degree matrix of the graph.
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Model Framework

[4] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017. 
[5] T. Ahmad, PN Papadopoulos, “Prediction of Cascading Failures and Simultaneous Learning of Functional Connectivity in Power  System ”ISGT Europe, Novi Sad, Serbia, 2022.
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Edge-Importance Matrix: Functional Connectivity 
in Power System

Edge-Importance based Spatial Attention Mask
For ST-GCN output/input features, 𝑥𝑜𝑢𝑡 are calculated as

𝑥𝑜𝑢𝑡 = 𝐺𝑔
−
1

2( ሚ𝐴) 𝐺𝑔
−
1

2 𝑥𝑖𝑛𝑊

where, 𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡 are the input/output features, W is the weights
Matrix and 𝐺𝑔 is the kernel obtained from spatial graph convolution.

Diagonal entries of M (self-connection) quantify the importance for each node, while off-diagonal 
entries do so for each functional connection (edge)

This matrix is shared across all
st − GCN layers by replacing ( ሚ𝐴) by 
ሚ𝐴 x M (element-wise multiplication) 



Case Study

Wind generators G Synchronous generators

Training and testing data generated by simulating a hybrid
dynamic model (including synchronous machines, RES
(wind-generation), associated controls and protection
devices) for IEEE 10 machine 39 bus New England Test
System [2].

3-phase fault on transmission lines as initiating events;
incremental load and wind power demand.

Power system features (voltage magnitude, Vmag (in p.u.)
assumed to be captured by PMU.

Posed as a binary classification problem.
Features

Adjacency matrix

Labels

X ´ n´T
w( ) = 11000 ´ 39 ´10( )

Y( ) = 11000 ´1( )



Results

The inclusion of Edge Importance matrix in st-GCN 
further improves the key performance metrices 
than using the vanilla st-GCN.

Stratified K-fold cross validation for k = 5 splits is used for different training and testing
data splits.

Training performance for the st − GCN + EdgeImp
classifier averaged over validation folds.

Classifier Classification Performance (%) (seed = 17)

Accuracy Precision Recall F1 score

vanilla st-GCN 92.56±1.55 84 93.22 88.36

st-GCN+EdgeImp 96.83±1.03 96.45 96.36 96.41

The graph induced by dynamic functional 
connectivity correctly predicts the location within 
1-hop and 2-hop neighborhood for all scenarios.



Interpretable Insights

• Lack of interpretability in “black-box neural networks” - hinder their deployment under mission
critical systems such as the power system.

• Current work introduces, edge importance matrix, M as an additional trainable parameter inside
the st-GCN to reveal the influence of a set of nodes and edges in model prediction.

• Diagonal elements of M depict the relative importance of various power system buses (graph
nodes) , while the off-diagonal elements of M depict the importance of power system lines (graph
edges) in the prediction of cascades.

𝑀 is a dense matrix, 
with significant off 
diagonal elements, 
mirroring the 
importance of not only 
local but also multi-
hop interactions.

|Ybus | matrix is sparse 
matrix mirroring the 
physical topology of 
the grid 



Interpretable Insights

• There is some positive correlation 
between admittance-based 
connectivity matrix and dynamic 
functional connectivity matrix.

• Some counter-intuitive cases 
where tightly coupled elements of 
admittance connectivity have no 
impact on dynamic functional 
connectivity for failures.



Concluding Remarks

• Work illustrates the potential of an interpretable, spatio-temporal graph learning framework
to predict the occurrence of dynamic cascading failures in a hybrid power system (i.e. including
power system dynamics and discrete actions of protection devices).

• The st-GCN model achieves improved performance when trained along with importance
matrix based spatial attention mask.

• From the sparsity patterns of matrices |Ybus | and M, it can be inferred that lighter the colour
gradient, closer are the buses/lines in their admittance based electrical connectivity and
functional connectivity respectively.

• Could be useful in preventive (e.g., hardening critical components) and corrective control for
mitigating the risk of catastrophic failures.



Future Work

• In order to build trust in the learnt sensitivities to cascading failures (𝑀 learnt using Vmag)
using the proposed method, comparison with relevant physics-based sensitivity[3] makes
sense.

• Future work also includes investigating the transferability of the st-GCN based learning
framework in case of topology changes and out of distribution data.

• Explore the possibility of edge-importance matrix as an actual distance metric to acquire
additional (perhaps causal) insights into power system functional graph.

[3] Simpson-Porco, J. W, et al Voltage collapse in complex power grids. Nature communications, 7(1), 1-8.



Thank you !

Further reading at …
tabia.ahmad@strath.ac.uk
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