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For the First time in the United Kingdom, the Total Electricity Generated from Wind,
Solar, and Hydro Power have reached 1 Trillion kWh in 2023
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Climate Change Smart Grid
» Extreme weather » Renewable energy integration
» Increasing Frequency and Intensity » Uncertainty and Intermittency
.-' » Power outage and economic loss

Challenges L —
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Prediction and Optimization Emergency Response Planning

 Short-term load forecasting e Short-term load forecasting
« Potential demand spikes and drop « Critical loads prioritize

Prediction « Demand response programs
« Generation and storage optimization determination

Load Forecasting

« Long-term load forecasting « Renewable energy integration
e Infrastructure upgrade and « Power outages prevention
expansion planning « Electricity supply stability

Investment and Upgrade Planning Economy and Sustainability
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Challenges

O Current works on load forecasting:

O Mainly focus on normal load forecasting

O Extreme weather: probabilistic modeling, uncertainty modeling,
scenario analysis

O Low generality: users, extreme event types

O Lack of relevant public data

O Objectives
O Studying the impact of different extreme weather on the load
profile.
O Overcoming the challenge of predicting these patterns due to their
infrequent but high-impact nature.
O Developing more sophisticated forecasting models to manage and
mitigate risks.
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Methodology
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Fig.1 Framework of Enhanced Load Forecasting Considering Extre%
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Datasets——EWELD

Extreme Weather Events Load Dataset (EWELD)
15-minute intervals over 6 years
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v' 386 industrial and commercial users across 17 different industries in 3 cities
v' A total of 5,741 records of extreme weather events

No. Extreme Weather Criterion

EW1 Low temperature Eemperature_below 10\.\'63’ bot{l]Cvls of theﬁS‘h:: conﬁde'nce.inte“rval of temperatures
etween 2015 to 2022 in the city, e.g, S0°F (Fahrenheit) for City 1

EW3 | High humidity hamidity between 2015 to 2033 i the ity 5,57 85% for ity | "

EW4 High heat and humidity Temperature larger than 95°F and relative humidity larger than 60%

EWS Severe thunderstorm - Damaging Wind Gusts Wind gust larger than 58 mph and smaller than 74 mph (miles per hour)

EW6 | Severe thunderstorm -Very Damaging Wind Gusts | Wind gust larger than 74 mph and smaller than 91 mph

EW7 | Severe thunderstorm -Violent Wind Gusts Wind gust larger than 91 mph

EWS Tropical Storm Wind speed larger than 39 mph and smaller than 54 mph

EW9 Severe Tropical Storm Wind speed larger than 54 mph and smaller than 73 mph

EW10 | Typhoon Wind speed larger than 73 mph and smaller than 93 mph

EWI11 | Strong Typhoon Wind speed larger than 93 mph and smaller than 114 mph

EWI12 | Super Typhoon Wind speed larger than 114 mph

EW13 | Heavy Rain Weather condition equals ‘Heavy Rain’

EWI14 | Heavy Rain/Windy Weather condition equals ‘Heavy Rain/Windy’

EWI15 | Heavy Rain Shower Weather condition equals ‘Heavy Rain Shower’

EWI16 | Heavy Rain Shower/Windy Weather condition equals ‘Heavy Rain Shower/Windy’

EW17 | Heavy T-Storm Weather condition equals ‘Heavy T-Storm’

EW18 | Heavy T-Storm/Windy Weather condition equals ‘Heavy T-Storm/Windy’

EWI19 | Light Sleet Weather condition equals ‘Light Sleet’

EW20 | Light Sleet/Windy Weather condition equals ‘Light Sleet/Windy’

Durham University
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Diverse Effects: Different extreme ., ~—etrescc | ”" el

weather events have varying impacts =, " " o e

on load. : :): £
v Load Type Dependency: The i ,

specific impact is dependent on the ¥ [y - .

type of load (e.g., residential, 3 rﬂJ “ \(\ ;

commercial, industrial). 4" —] | : ! T
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differently. =t

v Location Characteristics: The
geographic and climatic characteristics |
of the location also play a critical role. " . = s i

Time

Fig.2 Impacts of various extreme weather events on the electricity consumption of U380 in 2018. (a) Low temperature;
(b)High temperature; (c) High humidity; (d) High heat and humidity; (e) Severe tropical storm; (f) Strong typhoon; (g) The time
of different types of extreme weather in 2018. Shaded areas show the period of different extreme weather events. Different
color lines represent daily electricity consumption curves of the different days: the day extreme weather happened (D-0) in

the blue line, the previous day in the green line, and the same day of the last week in the red Iin(i/
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Weather Forecasting
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Cimate [------ >‘ Extreme

Statistical Machl.ne Numerical Dee;?
Learning Learning
Trends [Seasonalities [ Cycles Physics [ Dynamics Chemistry
. T . . Ground
Temperature Wind precipitation [--] Humidty Satellite - Radar Sensors
Transformer-based Fourcast[6]
CNNs, RNNs, LSTMs,... ExtremeWeather[7]

Ensembles
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Load Forecasting

v' Stacked Ensemble Learning
v Base Models for Diversity
v' Meta-Learner Integration

{ l l l l !
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Extreme Weather Learning
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= Extreme Weather Detection
» Feature Engineering and Threshold Setting
= Generalized Extreme Value (GEV)
= Label Distribution Smooth (LDS)
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Extreme Weather

Events

» Extreme Weather Impact [ [ ]

" Reg ress i O n Heatwaves Cold waves Typhoon, Hurricane Stoims

= Correlation Analysis - * u

Increased Cooling Increased Heating Power Outages Power Outages
Demand (AC Demand (Heating
= Post-processing Strategy Usage) S J J
L L

» Threshold Optimization
= Calibration of forecast probabilities |
= Bias Correction ot Eos

» Adjustment on the Sample Weights
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Results
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= Mean Absolute Percentage Error (MAPE)
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= Root Mean Squared Error (RMSE)
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