On Wires, Mires, and Fires: Towards a Wildfire Threat Map for the National Grid

Dr Joe Preece, Prof Nicholas Kettridge, and Dr Daniel Donaldson

When We Think of Wildfires, California Springs to Mind

But Wildfires in Europe – and the UK – Are On the Rise

Recorded Fires Since 2010

The Majority of These Are 'Small' Fires

Is the impact of wildfires on the National Grid a cause for concern?

The Current Approach

Proactive Planning for Critical Infrastructure is Needed

5x past 30 years by 2030

Reactionary investment is expensive

Wildfires Are Presented and Projected as Low Risk

Source: <u>Climate Change Adaptation Report</u>

Likelihood

A Quantitative Approach is Required

How many fires have burned in the National Grid's vicinity?

The Transmission Network is the Backbone of the UK

Over 2000 Fires in Proximity Since 2010

Most Lines Have Seen Between 1 and 11 Fires Within 25m

For the fires that do intersect infrastructure, will it cause any damage?

One Such Metric is to Compare Flame Height Against Clearance

SCHEDULE 2

Regulation 17(2)

MINIMUM HEIGHT ABOVE GROUND OF OVERHEAD LINES

Column 1	Column 2	Column 3
Nominal Voltages	Over Roads	Other Locations
Not exceeding 33,000 volts	5.8 metres	5.2 metres
Exceeding 33,000 volts but not exceeding 66,000 volts	6 metres	6 metres
Exceeding 66,000 volts but not exceeding 132,000 volts	6.7 metres	6.7 metres
Exceeding 132,000 volts but not exceeding 275,000 volts	7 metres	7 metres
Exceeding 275,000 volts but not exceeding 400,000 volts	7.3 metres	7.3 metres

Behave Modelling

A Behave Simulation Takes Some Inputs...

Vegetation

Slope Angle

Weather

...And Gets Some Outputs

Flame Height

Intensity

How Can We Obtain Relevant Input Values?

Vegetation

Slope Angle

Weather

We Use Three Open Datasets to Provide Localised Inputs

Land of Slope and Glory

Our Land Is a Tapestry of Land Cover Classes

Aggregate Class		Land Cover Class		
ID	Class Name	ID	Class Name	
1	Broadleaf Woodland	1	Deciduous Woodland	
2	Coniferous Woodland	2	Coniferous Woodland	
3	Arable	3	Arable	
4	Improved Grassland	4	Improved Grassland	
5	Semi-Natural Grassland	5 6 7 8	Neutral Grassland Calcareous Grassland Acid Grassland Fen	
6	Mountain, Heath, and Bog	9 10 11 12	Heather Heather Grassland Bog Inland Rock	
7	Saltwater	13	Saltwater	
8	Freshwater	14	Freshwater	
9	Coastal	15 16 17 18 19	Supralittoral Rock Supralittoral Sediment Littoral Rock Littoral Sediment Saltmarsh	
10	Built-Up Areas and Gardens	20 21	Urban Suburban	

We Are Interested in Six Aggregate Classes

Broadleaf Woodland

Coniferous Woodland

Arable

Semi-Natural Grassland

Improved Grassland

Mountain, Heath, and Bog

Arable and Grasslands Constitute The Majority (~80%)

Broadleaf Woodland

Coniferous Woodland

Semi-Natural Grassland

Improved Grassland

Mountain, Heath, and Bog

Arable

These Six Land Classes Account for 54% of All Fires

Broadleaf Woodland

6.0 %

4.2 %

Semi-Natural Grassland

Improved Grassland

40.5 %

12.6 %

Arable

Mountain, Heath, and Bog

Various Aggregate Classes Present Differing Slope Profiles

Areas of Semi-Natural Grassland are Rising

The average wind speed in the United Kingdom is 15.37 km/h (8.3 knots).

Towards a Threat Map

Let Us Take One Fuel Model

Add the Clearance Value

Add the Average UK Wind Speed

Add Our Slope Profiles

Each Land Cover Class Has a Unique Fire Model

With Local Predictions, We Can Start to Build a National Map

Looking Ahead

Recommendations

- 1. Actual recorded wildfire data should be used to inform historical exposure.
- 2. Start tracking planned outages during fire events.
- **3.** Focus attention on understanding arable or grassland land covers.
- 4. Replicate the approach for other infrastructure.

Additional Data Layers Will Provide Greater Insights

Deeper Dives

Likelihood Intensity Development of a wildfire prediction model to identify the influence of weather. Intensity with UK specific fuel loading.

Wildfire Risk

Quantifying and reducing risk before it becomes an issue.

Our methodology will soon be available as an open-source Python package.

Thank You For Listening!

- Project Team
 - University of Birmingham
 - Joe Preece
 - Nick Kettridge
 - Daniel Donaldson
 - National Grid
 - Douglas Dodds
 - Infrastructure Operators' Adaptation Forum (IOAF)
 - John Dora
- Further Collaborators
 - University of Birmingham
 - Kerryn Little
 - University of Exeter
 - Claire Belcher