

Multilevel Monte Carlo with Surrogate Models for Resource Adequacy Assessment

Ensieh Sharifnia (PhD candidate at TU Delft)

Supervisor: Dr. Simon Tindemans

Promotor: Prof. Peter Palensky

Published in the probabilistic methods applied to power systems (PMAPS 2022) [e.sharifnia@tudelft.nl, s.h.tindemans@tudelft.nl, p.palensky@tudelft.nl]

Resource Adequacy Assessment

Measuring risk in system adequacy studies

Typically, risk measures for system adequacy are of the form expecta $\Lambda^{\rm MW}$

Examples

- **1.** EENS/EUE : *X* = energy not served in a random year
- **2.** LOLE (in hours) : *X* = number of hours of shortfall in a random year

Example: impact of storage in a model Great Britain system

- Probabilistic weather and power generation model
- Optimal use of batteries can mitigate shortfalls (needs sequential simulati
- multiple storage units with ENS-minimising policy (Evans et al., 2019)

M. P. Evans, S. H. Tindemans, and D. Angeli, "Minimizing Unserved Energy Using Heterogeneous Storage Units," IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3647–3656, sep 2019.

Multi Level Monte Carlo (MLMC)

increasing accuracy = more work per sample

Telescopic identity $q = E[X_L]$

TUDelft

 $= E[X_0] + E[X_1 - X_0] + \dots + E[X_L - X_{L-1}]$ = $r_0 + r_1 + \dots + r_L$

$$\approx \frac{1}{n} \sum_{i=1}^{n} x_{L}^{(i)} \qquad \text{MC}$$

$$\approx \frac{1}{n_{0}} \sum_{i=1}^{n_{0}} x_{0}^{(i,0)} + \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \left(x_{1}^{(i,1)} - x_{0}^{(i,1)} \right) + \cdots \qquad \text{MLMC}$$
Rough estimation + Corrections Can be faster

M. B. Giles, "Multilevel Monte Carlo methods," Acta Numerica, vol. 24, pp. 259–328, may 2015.

https://www.easydrawingtips.com/how-to-draw-lion-face-head-step-by-step/

$$= + () + () + () + ()) + ())$$

MLMC variance

$$\mathbf{q} = \mathbf{E}[\mathbf{X}_{1}] + \mathbf{E}[\mathbf{X}_{2} - \mathbf{X}_{1}] + \dots + \mathbf{E}[\mathbf{X}_{L} - \mathbf{X}_{L-1}]$$
$$\mathbf{\sigma} = \sum_{l} \frac{\mathbf{\sigma}_{l}}{n_{l}}, \qquad \mathbf{\sigma}_{L} = \mathbf{\sigma}_{\mathbf{X}_{L}} + \mathbf{\sigma}_{\mathbf{X}_{L-1}} - 2 \operatorname{cov}(\mathbf{X}_{L}, \mathbf{X}_{L-1})$$

Example: storage and adequacy assessment

Range of models

1. Exact: multiple storage units with ENS-minimising policy (Evans et al., 201

2. Hand-tuned

- **1. Average:** aggregate storage unit with fixed daily operation
- 2. Greedy: multiple storage units with greedy operation (TS20)

3. Surrogate models

- 1. HGB+SVR: black-box machine learning approach
- 2. HGB+Gre: hybrid model that uses Greedy model to predict non-zero ENS values

Surrogate model

Different model stacks

Results		omparable	measure two risk indices		speedup w.r.t. regular MC		
Estimator	Architecture	Time (s)	LOLE (h/y)	EENS (MWh/y)	LOLE Speedup	EENS Speed	lup
MC	Exact	26600	1.745 ± 0.039	2420.0 ± 72.0	n/a	n/a	
TS20 base	Exact Avg	26200	1.743 ± 0.009	2406.0 ± 3.3	18	482	
Surr	Exact HGB+SVR	25900	1.739 ± 0.005	2407.0 ± 10.0	47	49	2
TS20 full	Exact Gre Avg	26000	1.735 ± 0.003	2405.0 ± 1.2	125	3617	1
Surr+base	Exact HGB+SVR Avg	25900	1.738 ± 0.002	2408.0 ± 1.1	269	4775	•
Hybrid+base	Exact HGB+Gre Avg	25800	1.738 ± 0.002	2405.0 ± 0.5	582	20946	
Full	Exact HGB+Gre HGB+SVR Avg	25800	1.735 ± 0.001	2406.0 ± 0.4	840	30969	3
							-

1. Hand-tuned models result in a large speedup (previously published, TS20)

2. With *only* a **machine-learned surrogate model**, speedups ~50x are within reach

3. Hand-tuned model stack can be further enhanced with ML models for **extreme speedups**

Summary and next steps

Summary

- Multilevel Monte Carlo can vastly speed up Monte Carlo adequacy assessment
- Hand-tuned models work well, but require expertise
- Machine-learned surrogate models can be used for a 'black box' approach
- Combining both approaches can be used for extreme speed-ups

Next steps

- Include the impact of training time
- Automatic selection of models

https://pixnio.com/nature-landscapes/spring/

Bonus slides

Training Surrogate models

- Suitable frame size
 - Minimum state dependency
 - Similar pattern
- One-off training

Simulation Speed

$$c_q = \frac{\sigma_Q}{q}$$
$$\frac{1}{c_q^2} = z_q \times t$$
$$z_q \coloneqq \frac{q^2}{t\sigma_Q^2}$$

Optimal n_l^*

$$t = \sum_{l} n_{l} \boldsymbol{\tau}_{l} \Rightarrow n_{l}^{*} = \frac{t}{\sum_{l'} \boldsymbol{\sigma}_{l'} \sqrt{\boldsymbol{\tau}_{l'}}} \times \frac{\boldsymbol{\sigma}_{l}}{\sqrt{\boldsymbol{\tau}_{l}}}$$

M. B. Giles, "Multilevel Monte Carlo methods," Acta Numerica, vol. 24, pp. 259–328, may 2015.

Better models with larger training sets

TABLE II

EFFECTS OF TRAINING SAMPLE SIZE ON SURROGATE ACCURACY

Surrogate model	Train size	Average RMSE	RMSE unit
SVR	500	175 ± 10	MWh/y
SVR	1000	142 ± 14	MWh/y
SVR	5000	97 ± 6	MWh/y

Impact of training size

TUDelft

TABLE III

EFFECT OF SURROGATE MODEL ACCURACY ON MLMC PERFORMANCE

-	Estimator	Train size	SVR RMSE (MWh/y)	HGBRT RMSE (h/y)	LOLE Speedup	EENS Speedup
-	TS20 full	-	-	-	125	3617
	Hybrid+base	500	267	0.34	349	12553
	Hybrid+base	1000	153	0.23	460	18723
	Hybrid+base	5000	85	0.19	582	20946

more data \rightarrow better match \rightarrow higher speedup

Level pair correlations

Level pairs contributions

Exact Samples: %0.5, Time: %99.2 LOLE contribution: 0.005158 h ± 0.00096 h EENS contribution: -0.5761 MWh ± 0.16 MWh HGB+Gre Samples: %21.2, Time: %0.5 LOLE contribution: -0.009317 h ± 0.00034 h EENS contribution: 14.45 MWh ± 0.17 MWh HGB+SVR Samples: %78.3, Time: %0.3 LOLE contribution: $-0.4031 \text{ h} \pm 0.00092 \text{ h}$ EENS contribution: -155.9 MWh ± 0.34 MWh Avg LOLE contribution: $2.142 \text{ h} \pm 0.0 \text{ h}$ EENS contribution: 2548.0 MWh ± 0.0 MWh 1.735 h ± 0.0014 h MLMC LOLE : MIMC FFNS: 2406.0 MWh + 0.41 MWh