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Outline 

• Research Question: Can a forecasting architecture be developed which can 
understand the underlying physical properties of a low-voltage distribution 
network in the forecasting of Distribution Locational Marginal Prices 
(DLMPs)?

• Generation of DLMPs using a fixed-point linearization methodology with 
historic DER generation and load data.

• Decomposition of DLMPs into linear combination of dual variables 
corresponding to energy balance and physical constraints.

• Development of a forecasting mechanism which utilises Graph Convolution 
Networks and Long Short-Term Memory to forecast the decomposed 
elements of the DLMPs using a multi-output, multi-branch approach.
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Motivation

• Working towards flexibility and co-ordination at the distribution 
network level (Review of Electricity Market Arrangements, 2022).

• Rise in number of Distributed Energy Resources.

• Fostering Local energy markets.

• Importance of forecasting pricing signals.

• Pricing signals are hard to forecast due to complexities in physical 
properties of the distribution network!
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What are Distribution Locational Marginal 
Prices?

• The Price Signal.

• The dual components associated with energy balance constraints between 
nodes when solving an Optimal Power Flow (OPF) formulation that seeks 
to optimize for the lowest total cost in the system (Papavasiliou, 2018) 
(Toubeau, et al., 2021).

• Complicated signals with strong correlations in time and between nodes.

• Challenging to forecast for Day-Ahead and Real-Time Markets.
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Challenges Associated with Forecasting 
DLMPs – Signal Complexity

• OPF is the computation of voltage magnitude and phase angle at each bus 
in a power system under three-phase steady state conditions.

• Determine cases where there may be physical constraints in the system 
leading to higher marginal prices. 

• Non-linear power flow equations can be solved using numerical methods. 
Outputs from these form the basis for calculating DLMPs.

• Non-linearities associated with OPF make DLMPs complex signals which are 
strongly correlated in time and space.
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Challenges Associated with Forecasting 
DLMPs – Model Requirements

• For use in downstream tasks, architecture must allow cold-start forecasting 
(addition of new nodes in the system).

• Cross-nodal learning will be imperative to understand spatial 
dependencies.

• Forecasting architecture should be able to capture temporal dependencies 
in the system.
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Proposed Framework

• The proposed framework exploits the graphical structure of the 
distribution network using Graph Convolution Networks (GCN) coupled 
with LSTM to forecast DLMPs.

• Inputs: PV generation, Load, physical constraint component, price for 
marginal units and a binary marginal unit indicator.

• Outputs: physical constraint component (σ), price for marginal units (λMARG) 
and binary marginal unit indicator (s) which are converted to DLMPs (λ) in 
post-processing.
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Proposed Framework - Diagram
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Where σ represents the physical constraint component, λMARG represents the price for 
marginal units and s represents a binary marginal unit indicator



Proposed Framework – GCN

• A variant of the Convolutional Neural Network which learns graph 
representations of the system.

• Acts as a message passing system between nodes and has been used in 
other similar use cases such as traffic forecasting and precipitation 
forecasting.

• At the beginning of each layer, features of each node are aggregated by 
some aggregation function with feature vectors in its local neighborhood. 
These feature vectors are propagated locally (Wu, et al., 2019).

• Simultaneous update of all nodes in the system smooths hidden 
representations of the system and encourages cross nodal learning among 
locally connected nodes.
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Proposed Framework – LSTM

• A type of Recurrent Neural Network which has previously given SOTA 
results for speech recognition and natural language processing tasks.

• Ability to use backwards context for forecasting using gated units 
(forget gate, input gate and output gate). 

• Can leverage long-term information from past inputs for forecasting 
via a memory cell.

• Holds an internal representation of past events and outputs values 
based on relevant past information.
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Proposed Framework – Calculating DLMPs

• The forecasting system outputs the physical constraint component, 
Forecasted price for marginal units and a binary marginal unit indicator. 

• To calculate DLMPs (λ) for all nodes in the system the following equation is 
used: 

𝜆𝑁𝑂𝑁𝑀𝐴𝑅𝐺 = 𝐴 ∗ 𝜆𝑀𝐴𝑅𝐺 + 𝐵 ∗ 𝜎 1

𝜆 = 𝜆𝑀𝐴𝑅𝐺 ራ𝜆𝑁𝑂𝑁𝑀𝐴𝑅𝐺 2

𝑊ℎ𝑒𝑟𝑒 𝐴, 𝐵 𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘,
𝜎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Marginal units are the units that operate between their minimum and maximum limits

• Custom loss function defined as follows:
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐿𝑜𝑠𝑠 = 1 ∙ 𝑙𝑜𝑠𝑠𝜆𝑀𝐴𝑅𝐺 + 10 ∙ 𝑙𝑜𝑠𝑠𝜎 + 100 ∙ 𝑙𝑜𝑠𝑠𝑀𝐴𝑅𝐺 𝑈𝑁𝐼𝑇 (3)
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Case Study
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• 33 Bus system.

• Unit types: PV Generation, PV with Storage, Storage Only and Load 
Only.

• 491 days of data split into 48 settlement periods.

• 70:20:10 train/validation/test split.

• 65,990 data points when considering every node at every timestep.

• Ablation study looking at the MLP, GCN, LSTM and GCN+LSTM 
architectures.



Case Study – Results
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Table 1: Model results after final training using optimal parameters

Model MAPE MAE MSE

MLP 23.9598 0.5565 0.5921

LSTM 7.2037 0.6898 0.7453

GCN 13.6905 0.8807 1.1680

LSTM+GCN 4.5668 0.4890 0.5465

Where MAPE is the Mean Absolute Percentile Error, MAE is the Mean Absolute Error and 
MSE is the Mean Square Error 



Case Study – Results
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Case Study – Results
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Case Study – Results
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Actual vs Forecasted Lambda between timesteps 576-624 of the test dataset



Case Study – Results
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Actual vs Forecasted Lambda between timesteps 576-624 of the test dataset



Conclusions

• The GCN+LSTM outperforms GCN and LSTM only models indicating that 
the combination of the two allows for effective spatio-temporal learning.

• Our use of the custom loss function is justified as there is correlation 
between the accuracy of the binary marginal unit indicator and the 
performance in predicting DLMPs. 

• Model can successfully predict spikes in DLMP which indicates that the 
model can learn some information about the physical properties of the 
distribution network that cause these spikes.

• The model still struggles to predict in periods of peak generation and low 
consumption which could be due to actual voltage violation rates being 
highly uncertain and difficult to predict.
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Future Work

• Comparison to other SOTA algorithms for spatio-temporal learning 
such as bi-LSTM, Attention-LSTM or Attention-GCN.

• Looking at forecasting with bi-directional units and V2G systems.

• Turning deterministic forecasts into probabilistic forecasts using a 
quantile loss function. 

• Continued investigation into cold-start forecasting and changes to 
input graph structure.
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