Multiport Power Converter to enhance the resilience in a rural distribution network

Ministerio de Ciencia e Innovación of Spanish Government and Proyecto Equired (grant nº PID2021-1242920B-100).

Montserrat Montalà - Palau*, Marc Cheah Mañé, Oriol Gomis-Bellmunt

CITCEA-UPC

13th March 2025

iPLUG

CITCEA-UPC

- Resilience methodology
- System characteristics
- Multiport Power Converter (MPC)
- Resilience Evaluation with and without MP
- Conclusions

- 1. Resilience methodology
- 2. System characteristics
- 3. Multiport Power Converter (MPC)
- 4. Resilience Evaluation with and without MPC
- 5. Conclusions

General Resilience Methodology

) panda power

iPLUG

CITCEA-UPC

Resilience methodology

- System characteristics
- Multiport Power Converter (MPC)
- Resilience Evaluation with and without MPC
- Conclusions

VULNERABILITIES AND IMPACT

Rural Distribution Network

CITCEA-UPC

- Resilience methodolog
- System characteristics
- Multiport Power Converter (MPC)
- Resilience Evaluation with and without MPC
- Conclusions

- 5 kV (MV) network
- Low demand
- Bus 0 is the only point connected to the main grid
- Bus 4 is the one with the highest demand
- Bus 13 includes a self-consumption PV system

Multiport Power Converter

iPLUG

CITCEA-UPC

Resilience methodology

System characteristics

Multiport Power Converter (MPC)

Resilience Evaluation with and without MPC

Conclusions

About MPC...

- Integrate three or more energy devices into a single.
- Facilitate power converter integration in the power system.

System operation during faults with MPC

CITCEA-UP

Resilience methodology

Multiport Power Converter (MPC)

Resilience Evaluation with and without MPC

Conclusions

• ALL ELEMENTS CONNECTED:

The Main grid is the only supply point. MPC not used.

• GRID FAULTS:

MPC provides the demand to each feader.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

iPLUG

CITCEA-UPC

- Resilience methodology
- System characteristics

Multiport Power Converter (MPC)

Resilience Evaluation with and without MPC

Conclusions

• HAZARDS:

- 5 simple hazards (wildfire, wind, storms, high-access machinery and subsurface machinery)
- o 6 additional hazards obtained from combined events.
- · Hazard index based on a probabilistic and intensity scoring.

• VULNERABILITIES:

- o 8 vulnerabilities related to system's technical characteristics
- Identified in collaboration with the local DSO
- LIKELIHOOD:
 - $\ast\,$ 10 vulnerabilities' likelihood levels \rightarrow Level of mitigation
- IMPACT:

$$\iota_{-f_{v,h}} = [max_pload^{\mathcal{N}} - max_pload^{\mathcal{N}-f}] \cdot rt_{v,h}$$
(1)

$$\iota_{-}w_{v,h} = [max_{-}p_load^{\mathcal{N}} - max_{-}p_load^{\mathcal{N}-w}] \cdot rt_{v,h}$$
(2)

Element's impact with and without MPC

Resilience Evaluation with and without MPC

without MPC

with MPC

- 47.134 - 58.917 kW

The MPC...

- provides redundancy to critical elements.
- includes a BESS that supplies the demand during faults.
- reduces the most critical element's impact

Systems's resilience with and without MPC

iPLUG

CITCEA-UPC

- Resilience methodology
- System characteristics

Multiport Power Converter (MPC

Resilience Evaluation with and without MPC

Conclusions

without MPC

with MPC

0 - 15	5,449 k	W		0,000 ·	- 1	9,067	κW
49 - 3	30,898	kW	—	19,067	-	38,134	kW
98 - 4	46,346	kW	—	38,134	-	57,201	kW
46 - 6	61,795	kW	_	57,201	-	76,267	kW
95 - 7	77,244	kW	_	76,267	-	95,334	kW
98 - 4 46 - 6 95 - 7	46,346 61,795 77,244	kW kW kW	_	38,134 57,201 76,267	-	57,201 76,267 95,334	k k k

The MPC...

- reduces the power at risk in critical events.
- increases the overall system's resilience.

Conclusions

iPLUG

CITCEA-UPC

- Resilience methodology
- System characteristics
- Multiport Power Converter (MPC)
- Resilience Evaluation with and without MPC
- Conclusions

- Resilience analysis allows identifying critical elements, i.e., assets or regions that risk more energy or power.
- The MPC facilitates the integration of multiple elements, simultaneously improving various weaknesses.
- The MPC facilitates the interconnection of existing elements and the integration of new generation or storage elements.
- The MPC is identified as a potential technology from a resilience perspective.

Acknowledgements

iPLUG

CITCEA-UPC

- Resilience methodology
- System characteristics
- Multiport Power Converter (MPC)
- Resilience Evaluation with and without MPC
- Conclusions

• Local Distribution System Operator (DSO).

 European Union's Horizon Europe research and innovation programme and funded project "iPLUG" (grant nº 01069770).

 Ministerio de Ciencia e Innovación of Spanish Government and Proyecto Equired (grant nº PID2021-124292OB-I00).

aněll

Multiport Power Converter to enhance the resilience in a rural distribution network

Ministerio de Ciencia e Innovación of Spanish Government and Proyecto Equired (grant nº PID2021-1242920B-100).

Montserrat Montalà - Palau*, Marc Cheah Mañé, Oriol Gomis-Bellmunt

CITCEA-UPC

13th March 2025